a2 United States Patent

US009251348B2

(10) Patent No.: US 9,251,348 B2

Fischer et al. 45) Date of Patent: *Feb. 2, 2016
(54) DETECTION OF RETURN ORIENTED (56) References Cited
PROGRAMMING ATTACKS
U.S. PATENT DOCUMENTS
(71) Applicant: Intel Corporation, Santa Clara, CA
US) 5,944,821 A 8/1999 Angelo_
(6,578,094 Bl 6/2003 Moudgill
) 6,802,006 Bl 10/2004 Bodrov
(72) Inventors: Stephen A. Fischer, Gold River, CA 6,941,473 B2* 9/2005 Etoh etal. ...ooooovevvrvvnrean, 726/5
(US); Kevin C. Gotze, Hillsboro, OR 7,272,748 Bl 9/2007 Conover et al.
(US); Yuriy Bulygin, Beaverton, OR 7,287,285 Bl 10/2007 Szor
(US); Kirk D. Brannock, Hillsboro, OR ;:ggi:?fﬁ gé ggggg gi}rlil;sky etal
(US) 7,631,249 B2 12/2009 Borde et al.
8,566,944 B2 10/2013 Peinado et al.
(73) Assignee: Intel Corporation, Santa Clara, CA 2001/0044904 Al 11/2001 Berg et al.
(US) 2002/0144141 Al 10/2002 Edwards et al.
2003/0145226 Al 7/2003 Bruton et al.
I 2007/0180524 Al 8/2007 Choi et al.
(*) Notice: Subject. to any dlsclalmer,. the term of this 2008/0015808 Al 112008 Wilson et al.
patent is extended or adjusted under 35 2008/0016314 Al 1/2008 Li et al.
U.S.C. 154(b) by O days. 2008/0060077 Al 3/2008 Cowan et al.
This patent is subject to a terminal dis- (Continued)
claimer. OTHER PUBLICATIONS
(21) Appl. No.: 13/799,663 Davi et al, “ROPdefender: A Detection Tool to Defend Against
) Return-Oriented Programming Attacks”, Mar. 2011, ASIACCS 11,
(22) Filed: Mar. 13,2013 p. 40-51 %
(65) Prior Publication Data (Continued)
US 2014/0123286 Al May 1,2014 Primary Examiner — Christopher Revak
Related U.S. Application Data (74) Attorney, Agent, or Firm — Trop, Pruner & Hu, P.C.
(63) Continuation of application No. 13/664,532, filed on (57) ABSTRACT
Oct. 31, 2012. In one embodiment, a processor includes at least one execu-
tion unit and Return Oriented Programming (ROP) detection
(1) Int. Cl. logic. The ROP detection logic may determine a ROP metric
GOGF 21/50 (2013.01) based on a plurality of control transfer events. The ROP
GOGF 21/56 (2013.01) detection logic may also determine whether the ROP metric
(52) US.CL exceeds a threshold. The ROP detection logic may also, in
CPC e GO6F 21/566 (201301) response toa determination that the ROP metric exceeds the
(58) Field of Classification Search threshold, provide a ROP attack notification.
None

See application file for complete search history.

21 Claims, 12 Drawing Sheets

200

Detect control transfer events

210
/_

1

Determine ROP metric based |/ 20
on control transfer events

YES

v

240
Notify protection software of |/
detection of ROP attack

i

Freeze branch instruction log

250
—

US 9,251,348 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2008/0216175 Al
2009/0144309 Al
2010/0122088 Al
2010/0175132 Al*
2011/0145921 Al
2011/0277035 Al

9/2008 Pike

6/2009 Cabrera et al.

5/2010 Oxford

7/2010 Zawadowskiy et al. 726/23

6/2011 Mathur et al.
11/2011 Singh et al.
2012/0030758 Al* 2/2012 vanden Bergetal. 726/22
2012/0167120 Al* 6/2012 Hentunen 719/320
2012/0297485 Al* 11/2012 Maedaetal. 726/23
2013/0014221 Al 1/2013 Moore et al.
2013/0036464 Al 2/2013 Glew et al.
2013/0117843 Al* 5/2013 Komaromy etal. 726/22
2013/0185792 Al* 7/2013 Balakrishnan et al. .. 726/22
2014/0020092 Al* 1/2014 Davidov 726/22
2014/0075556 Al* 3/2014 Wicherskicccoovennenn. 726/23
2014/0096245 Al 4/2014 Fischer
2014/0096247 Al 4/2014 Fischer
2014/0123281 Al 5/2014 Fischer

OTHER PUBLICATIONS

Lu et al, “deROP: Removing Return-Oriented Programming from
Malware”, Dec. 2011, ACSAC 11, p. 363-372.*

Shacham, “The Geometry of Innocent Flesh on the Bone: Return-
into-libc without Function Calls (on the x86)”, Nov. 2007, CCS *07,
p. 552-561.*

Checkoway et al, “Return-Oriented Programming with Returns”,
Oct. 2010, CCS ’10, p. 559-572.*

Roemer, R. et al.; “Return-Oriented Programming: Systems, Lan-
guages, and Applications”, University of California, San Diego;
ACM Transactions on Information and System Security (TISSEC),
Mar. 2012, 42 pages.

Buchanan, E. et al., “Return-Oriented Programming: Exploitation
Without Code Injection”, University of California, San Diego; Pre-
sentation at Black Hat USA 2008 Briefings, Aug. 2008, 53 pages.
Zovi, D., “Return-Oriented Exploitation”; Presentation at Black Hat
USA 2010 Briefings, Jul. 2010, 91 pages.

Vasilis Pappas, "kBouncer: Efficient and Transparent ROP Mitiga-
tion’, Apr. 1, 2012, Retrieved from http://www.cs.columbia.edu/
~vapappas/papers/kbouncer.pdf See pp. 1-2, 5-6.

Liwei Yuan et al.,’Security Breaches as PMU Deviation: Detecting
and Identifying Security Attacks Using Performance Counters’, In:
Proceedings of the Second Asia-Pacific Workshop on Systems,
Shanghai, China, Jul. 11-12, 2011, Article No. 6 See pp. 1-3, 5.
International Searching Authority, “Notification of Transmittal of the
International Search Report and the Written Opinion of the Interna-
tional Searching Authority,” mailed Nov. 14, 2013, in International
application No. PCT/US2013/048531.

Buchanan, E. et al., When Good Instructions Go Bad: Generalizing
Return-Oriented Programming to RISC, in: Proceedings of 15th
ACM Conference on Computer and Communications Security 2008,
ACM Press, Alexendria, Virginia, USA, Oct. 27-31, 2008, pp. 28-38.
U.S. Patent and Trademark Office, Office Action mailed Nov. 14,
2014, with Reply filed Mar. 11, 2015, in U.S. Appl. No. 13/664,532.
U.S. Patent and Trademark Office, Final Office Action mailed Nov.
26, 2014, with Request for Continued Examination filed Feb. 25,
2015, in U.S. Appl. No. 13/799,612.

U.S. Patent and Trademark Office, Office Action mailed Aug. 7,
2014, with Reply filed Nov. 6, 2014, in U.S. Appl. No. 13/799,612.
U.S. Patent and Trademark Office, Office Action mailed Nov. 13,
2013, with Reply filed Feb. 12, 2014, in U.S. Appl. No. 13/631,342.
U.S. Patent and Trademark Office, Office Action mailed Sep. 25,
2014, with Reply filed Dec. 29, 2014, in U.S. Appl. No. 13/631,342.
U.S. Patent and Trademark Office, Office Action mailed Mar. 12,
2014, with Reply filed Jun. 12, 2014, in U.S. Appl. No. 13/664,532.
U.S. Patent Trademark Office, Office Action mailed on Mar. 23, 2015
and Reply filed on May 21, 2015, in U.S. Appl. No. 13/631,342.
Cowan, et al., “StackGuard: Automatic Adaptive Detection and Pre-
vention of Buffer-Overflow Attacks,” 7th USENIX Security Sympo-
sium, Jan. 26-29, 1998, pp. 1-15.

U.S. Patent and Trademark Office, Notice of Allowance mailed Jun.
22,2015, in U.S. Appl. No. 13/799,612.

U.S. Patent and Trademark Office, Office Action mailed on Mar. 23,
2015 and Reply filed on May 21,2015, in U.S. Appl. No. 13/631,342.
U.S. Patent and Trademark Office, Office Action mailed on Jun. 17,
2015 and Reply filed on Aug. 11,2015, in U.S. Appl. No. 13/664,532.

* cited by examiner

US 9,251,348 B2

Sheet 1 of 12

Feb. 2, 2016

U.S. Patent

Yl 9Old
. ovT
va\,\m, Fo 1001
Jos uona91ag
uonovl0.d d0Od
. ocT
ccl
21607 |0Jjuo0
wa)sAg bunessdo .co_.u_o_sbumc_o
04 o
Aowsy J0SS920.d
001
wo1sAg

US 9,251,348 B2

Sheet 2 of 12

Feb. 2, 2016

U.S. Patent

8yl — vl
21607 [01U0D Jojesedwon
—
ovl vl
21607 seig JOIB|NWINJDY
ovl

01607 uondsleQ 4Oy

dl ©lId
gcT 7T oct
6o nun lagng
uolnonasuy| uonaipald)oelS
youeug youeug uine|y
l——P>
¥ET ZEl
J0109818(Jajgng
uononJsu| uononJsu|
(o
o_mon_ |0JIUOD UOI1oNJISU|

U.S. Patent Feb. 2, 2016 Sheet 3 of 12

START

US 9,251,348 B2

200

Detect control transfer events

210
/_

Y

Determine ROP metric based
on control transfer events

220
/_

ROP metric
exceeds threshold?

YES

Y

230

Notify protection software of
detection of ROP attack

240
/_

NO !

Freeze branch instruction log

| 250
—

END

FIG. 2

U.S. Patent Feb. 2, 2016 Sheet 4 of 12 US 9,251,348 B2

310

J

312
Increment count for each /
return instruction

!

314
Decrement count for each /
call instruction

I

/— 316
Adjust count using bias factor

230

FIG. 3A

U.S. Patent

Feb. 2, 2016

START

Sheet 5 of 12

US 9,251,348 B2

320

¥

Increment count for each
control transfer instruction
associated with a stack pop
instruction

/— 322

!

Decrement count for each
control transfer instruction
associated with a stack push
instruction

/— 324

Y

Adjust count using bias factor

;/— 326

FIG. 3B

U.S. Patent

Feb. 2, 2016

START

Sheet 6 of 12

US 9,251,348 B2

330

Increment count for each
control transfer instruction
associated with an increase in
stack pointer

/— 332

!

Decrement count for each
control transfer instruction
associated with a decrease in
stack pointer

/— 334

I

Adjust count using bias factor

/— 336

230

FIG. 3C

U.S. Patent Feb. 2, 2016 Sheet 7 of 12 US 9,251,348 B2

d

342
Increment count for /
each return misprediction

R —

Decrement count for each
correct return prediction

344

o e e e E =
» 1

! i — 346
i Adjust count using bias factor t

230

FIG. 3D

U.S. Patent Feb. 2, 2016 Sheet 8 of 12 US 9,251,348 B2

START

350

¥

Increment count for
each branch misprediction

/— 352

!

Decrement count for each
correct branch prediction

| 354
—

Y

: : 356
i Adjust count using bias factor {

230

FIG. 3E

US 9,251,348 B2

Sheet 9 of 12

Feb. 2, 2016

U.S. Patent

¥ Old
4
urewoq uosy |...| BOSY (72
alooun dl dl ONI
1572
Gy ayoe) paleys

urewoq
8109

uglLvy
8109

qa0ly
8109

eQLy
8109

GO¥

09%
Aowspy

wolsAg

00¥

U.S. Patent

Feb. 2, 2016 Sheet 10 of 12 US 9,251,348 B2
PCH
500 500
IF IF
580a 580n
PCU
955
Display Controller System
552 Agent IMC
550 570
/530
4 Core LLC
510a 540a
Core LLC
510 <
Core LLC
Core LLC
510n 540n
.

Graphics Engine

520

FIG. 5

U.S. Patent Feb. 2, 2016 Sheet 11 of 12 US 9,251,348 B2

Power Control 1160

CORE 1101 CORE 1102

Arch Reg Arch Reg Arch Reg Arch Reg
1101a 1101b 11022 1102b

B1B and I-TLB 1120 BiB and I-TLB 1121
| |
Decode 1125 Decode 1126

] |
Rename/Allocater 1130 Rename/Allocater 1131
[[
Scheaduler/Execution Scheduler/Execution
Unit(s) 1140 Unit(s) 1141
[[
Reorder/Retirement Reorder/Retirement
Unit 1135 Unit 1136

Lower level D- Lower level D-
Cache and D-TLB 1150 Cache and D-TLB 1151

A A

Y Y

Higher level cache 1110
[
Y

Bus Interface 1105

Controller(s) 1170

110

~

Device 1180 1176 1177 | System memory 1175

FIG. 6

US 9,251,348 B2

Sheet 12 of 12

Feb. 2, 2016

U.S. Patent

334090
™~ — —
575 0£9 929 z29
JOVHOLS V1V - S3IOIAZAWWOO | |3SNOW / QHVOSAIN
f74:) 719 819
o/l olany S321A3Q O/ Jo4aiyg sng
919 969 269
4 4 6€9
\ 8¢9
869 069 %60 SOIHAYYD
pS9 /A F 269 L &
989 889 N > 8/9 979
d-d d-d d-d d-d
0G9
€9 | — 289 B39 D — Bh29 29 14 | Z€9
AHOWIW HOW 3500 105 HOW AHOWII
—\ ‘004dd —\ "00Hd
—_ q¥89 Ty 79 _
\ 89 i 049
HOSSIO0Hd HOSSII0Hd
009

US 9,251,348 B2

1
DETECTION OF RETURN ORIENTED
PROGRAMMING ATTACKS

This application is a continuation of U.S. patent applica-
tion Ser. No. 13/664,532, filed Oct. 31, 2012, the content of
which is hereby incorporated by reference.

BACKGROUND

Embodiments relate generally to computer security.

Computer exploits are techniques which may be used to
compromise the security of a computer system or data. Such
exploits may take advantage of a vulnerability of a computer
system in order to cause unintended or unanticipated behav-
ior to occur on the computer system. For example, Return
Oriented Programming (ROP) exploits may involve identify-
ing a series of snippets of code that are already available in
executable memory (e.g., portions of existing library code),
and which are followed by a return instruction (e.g., a RET
instruction). Such snippets may be chained together into a
desired execution sequence by pushing a series of pointer
values onto the call stack and then tricking the code into
execution the first pointer value. This chained execution
sequence does not follow the intended program execution
order that the original program author intended, but may
instead follow an alternative execution sequence. In this man-
ner, an attacker may create a virtual program sequence with-
out requiring injection of external code.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1A-1B are block diagrams of systems in accordance
with one or more embodiments.

FIG. 2 is a sequence in accordance with one or more
embodiments.

FIGS. 3A-3E are sequences in accordance with one or
more embodiments.

FIG. 4 is ablock diagram of a processor in accordance with
an embodiment of the present invention.

FIG. 5 is a block diagram of a multi-domain processor in
accordance with another embodiment of the present inven-
tion.

FIG. 6 is a block diagram of an embodiment of a processor
including multiple cores is illustrated.

FIG. 7 isablock diagram of a system in accordance with an
embodiment of the present invention.

DETAILED DESCRIPTION

In accordance with some embodiments, detection of
Return Oriented Programming (ROP) attacks may be pro-
vided. In one or more embodiments, ROP attacks may be
detected based on a ROP metric (e.g., a metric indicating the
likelihood that a system is under a current ROP attack). In
some embodiments, the ROP metric is generated based at
least in part on control transfer events, meaning instances of
instructions and/or states that are associated with ROP
attacks. For example, in some embodiments, control transfer
events may include instances of control transfer instructions
such as subroutine call instructions, subroutine return instruc-
tions, branch or jump instructions, etc. Further, in some
embodiments, control transfer events may include pairs of
associated instructions (i.e., specific types of instructions
executed within a given range of each other). Furthermore, in
some embodiments, control transfer events may include
branch or return mispredictions.

5

10

15

20

25

30

35

40

45

50

55

60

65

2

Referring to FIG. 1A, shown is a block diagram of a system
100 in accordance with one or more embodiments. As shown
in FIG. 1A, the system 100 may include a processor 110 and
a memory 120. In accordance with some embodiments, the
system 100 may be all or a portion of any electronic device,
such as a cellular telephone, a computer, a server, a media
player, a network device, etc.

In accordance with some embodiments, the memory 120
may include an operating system (OS) 122 and protection
software 124. In some embodiments, the operating OS 122
and/or the protection software 124 may include functionality
to protect the system 100 against computer exploits and
attacks. For example, the protection software 124 may be an
anti-virus application, an intrusion detector, a network fire-
wall, etc.

As shown, in some embodiments, the processor 110 may
include instruction control logic 130 and ROP detection logic
140. In one or more embodiments, the instruction control
logic 130 may include functionality to manage and/or opti-
mize the performance characteristics of the processor 110.
For example, the instruction control logic 130 may include
functionality for performance profiling, logging, pre-fetch-
ing, branch prediction, tuning, etc. Further, in some embodi-
ments, the ROP detection logic 140 may include functionality
to detect a ROP attack against the system 100. This function-
ality of the ROP detection logic 140 is described further
below with reference to FIGS. 1B, 2, and 3A-3E.

In one or more embodiments, the ROP detection logic 140
may be implemented in any form of hardware, software,
and/or firmware. For example, the ROP detection logic 140
may be implemented in microcode, programmable logic,
hard-coded logic, control logic, instruction set architecture,
processor abstraction layer, etc. Further, the ROP detection
logic 140 may be implemented within the processor 110,
and/or any other component accessible or medium readable
by processor 110, such as memory 120. While shown as a
particular implementation in the embodiment of FIG. 1A, the
scope of the various embodiments discussed herein is not
limited in this regard.

Referring now to FIG. 1B, shown are block diagrams ofthe
instruction control logic 130 and the ROP detection logic 140
in accordance with one or more embodiments. As shown, in
some embodiments, the instruction control logic 130 may
include an instruction buffer 132, an instruction detector 134,
a return stack buffer 136, a branch prediction unit 137, and a
branch instruction log 138.

In one or more embodiments, the instruction buffer 132
may be a buffer including entries corresponding to instruc-
tions processed in the processor 110. For example, in some
embodiments, the instruction buffer 132 may be an instruc-
tion retirement buffer. In such embodiments, as each instruc-
tion is completed, a corresponding entry is cleared from the
instruction buffer 132. Such instructions may include, e.g.,
subroutine call instructions (e.g., CALL), subroutine return
instructions (e.g., RET), branch or jump instructions (e.g.,
IF-THEN, IMP, GOTO), stack instructions (e.g., PUSH,
POP), etc.

In one or more embodiments, the instruction detector 134
includes functionality to detect entries of the instruction
buffer 132 that correspond to control transfer instructions
associated with ROP attacks. For example, in some embodi-
ments, the instruction detector 134 may detect entries corre-
sponding to subroutine call instructions, subroutine return
instructions, branch or jump instructions, stack instructions,
etc. Further, in response to detecting such entries, the instruc-
tion detector 134 may send a detection signal to the ROP

US 9,251,348 B2

3

detection logic 140. In some embodiments, the detection
signal may indicate the type of the detected instruction.

In one or more embodiments, the return stack buffer 136
stores return pointers for use in performance optimization of
the processor 110 (i.e., return prediction). For example, when
a callto a subroutine is executed in a program, the instruction
control logic 130 may predict that a corresponding return
from the subroutine will be subsequently performed. Accord-
ingly, in some embodiments, a return pointer may be pushed
onto the return stack buffer 136 in anticipation of executing
the predicted return instruction.

In accordance with some embodiments, the branch predic-
tion unit 137 includes functionality to predict the future direc-
tion of a branch executed by the processor 110. In some
embodiments, the predictions provided by the branch predic-
tion unit 137 may be used to fetch instructions so that they can
be readied for execution and/or speculatively executed,
thereby saving some of the time that would be required to
fetch the instructions when the branch is taken. In one or more
embodiments, the branch prediction unit 137 may include
functionality to identify correct and incorrect branch predic-
tions. For example, the branch prediction unit 137 may iden-
tify all incorrectly predicted branches, and/or may identify
specific types of branch mispredictions, such as mispredicted
indirect branches (i.e., branches where the branch target is
held in a register or memory), mispredicted far branch
instructions (i.e., branches that perform a control transfer that
also involves changing the code segment), etc.

In accordance with some embodiments, the branch instruc-
tion log 138 may store address information for a given num-
ber of the most recent branch related instructions. For
example, in some embodiments, the branch instruction log
138 may store source and destination addresses for the last
sixteen branch related instructions (including call and return
instructions) processed in the processor 110. Such function-
ality of the branch instruction log 138 may be used for debug-
ging purposes, and may be referred to as Last Branch Record
(LBR) functionality.

In some embodiments, the branch instruction log 138 may
include functionality to selectively freeze its contents, mean-
ing to stop updating the stored address information at a spe-
cific point in time, regardless of whether any new branch
related instructions are executed subsequently. In one or more
embodiments, the freeze function may be triggered based on
a signal received from the ROP detection logic 140.

As shown, in some embodiments, the ROP detection logic
140 includes an accumulator 142, a comparator 144, bias
logic 146, and control logic 148. In one or more embodi-
ments, the accumulator 142 includes functionality to generate
a count based on control transfer events occurring during a
defined window. Specifically, in some embodiments, the
accumulator 142 may increment or decrement a counter in
response to detecting instances of control transfer instruc-
tions (e.g., call or return instructions, branch or jump instruc-
tions, etc.) and/or mispredictions of control transfer instruc-
tions. For example, in some embodiments, the accumulator
142 may increment the counter in response to detecting a
control transfer instruction associated with popping (i.e.,
removing) an instruction return pointer value from the call
stack (e.g., a return instruction). Further, in some embodi-
ments, the accumulator 142 may decrement the counter in
response to a detecting a control transfer instruction associ-
ated with pushing (i.e., storing) an instruction return pointer
value on the call stack (e.g., a call instruction).

In one or more embodiments, the accumulator 142 may
detect instances of control transfer instructions using the
instruction detector 134. For example, the accumulator 142

30

40

45

4

may increment the counter in response to receiving a detec-
tion signal indicating the detection of a return instruction.
Further, in some embodiments, the accumulator 142 may
decrement the counter in response to receiving a detection
signal indicating the detection of a call instruction. Note that,
in normal operation (i.e., when not under a ROP attack), a call
instruction is typically followed some instructions later by a
corresponding return instruction. Accordingly, in normal
operation, counter increases are generally balanced by
counter decreases, and thus the counter will remain within a
specific range around the zero value. However, in the event of
a ROP attack, the number of return instructions may substan-
tially exceed the number of call instructions (referred to as a
return-call imbalance). Therefore, under a ROP attack, the
counter may increase beyond the specific range around the
zero value. Thus, in this example, the counter value may be
used as a ROP metric.

In one or more embodiments, the accumulator 142 may
interact with the return stack buffer 136 to detect return pre-
dictions and/or mispredictions, and to increment/decrement
the count based on such detections. For example, in some
embodiments, the accumulator 142 may increment a counter
in response to detecting a mispredicted return instruction.
Further, in some embodiments, the accumulator 142 may
decrement the counter in response to detecting a correctly
predicted return instruction.

In one or more embodiments, the accumulator 142 may
interact with the branch prediction unit 137 to detect branch
predictions and mispredictions, and to increment/decrement
the count based on such detections. For example, in some
embodiments, the accumulator 142 may increment a counter
in response to detecting any mispredicted branch instruction.
Further, in some embodiments, the accumulator 142 may
decrement the counter in response to detecting any correctly
predicted branch instruction. In another example, in some
embodiments, the accumulator 142 may increment a counter
in response to detecting a particular type of mispredicted
branch (e.g., a mispredicted indirect branch, a mispredicted
far branch, etc.).

In one or more embodiments, the accumulator 142 may
also detect instances of stack pivots (e.g., a return instruction
associated with an instruction moving the stack pointer to a
new memory location). Further, in response to detecting a
stack pivot, the accumulator 142 may increment the counter
by some amount (e.g., 1, 2, 5, etc.).

In one or more embodiments, the accumulator 142 may
adjust a single counter based on multiple types of control
transfer events (e.g., call instructions, return instructions,
mispredictions, etc.). Further, in some embodiments, the
accumulator 142 may include separate counters, each corre-
sponding to a different type of control transfer event. Alter-
natively, in some embodiments, the ROP detection logic 140
includes multiple accumulators 142, each corresponding to a
different type of control transfer event.

In one or more embodiments, the accumulator 142 may be
limited to a predefined window. For example, the accumula-
tor 142 may reset the count after a specific number of instruc-
tions (e.g., 10, 100, 1000, etc.) are processed in the processor
110. In another example, the accumulator 142 may be a
circular buffer storing a given number of instructions. In yet
another example, the accumulator 142 may reset the count
after a given time period (e.g., 1 millisecond, 1 second, 1
minute, etc.) has expired. In such embodiments, the counter
may reflect a return-call imbalance occurring within the pre-
defined window (e.g., ten more return instructions than call
instructions processed during a window of 1000 instructions).
In some embodiments, the accumulator 142 may include a

US 9,251,348 B2

5

saturating mode to prevent the count from exceeding maxi-
mum and/or minimum limits. For example, in some embodi-
ments, the accumulator 142 may clip the count to a maximum
count limit (e.g., a hardware buffer capacity) in the case of a
count increment, and/or may clip the count to the minimum
count limit in the case of a count decrement.

In accordance with some embodiments, the comparator
144 includes functionality to provide an attack notification
when the count of the accumulator 142 exceeds a predefined
threshold. In some embodiments, the predefined threshold
may be set to a count level or percentage that indicates a high
probability that the system 100 is under a ROP attack. For
example, assume that the count of the accumulator 142 is to
indicate a return-call imbalance during a window of one
hundred instructions. Assume further that, before completing
the window of one hundred instructions, the comparator 144
determines that the count of the accumulator 142 reaches
eleven, and thereby exceeds a predefined threshold of ten
(i.e., a count of positive ten). Therefore, in this example, the
comparator 144 may trigger an attack notification (e.g., an
interrupt, an exception, etc.) to indicate that the system 100 is
probably under a ROP attack. Further, in some embodiments,
the attack notification may be sent to the OS 122 and/or the
protection software 124. In response, in one or more embodi-
ments, the OS 122 and/or the protection software 124 may
undertake actions to prevent and/or interrupt the ROP attack
(e.g., system or process stoppage, memory quarantine, event
logging, user notification, etc.). For example, the OS 122
and/or protection software 124 may determine that the ROP
detection is false based on the system process state, and may
thus allow the process to continue execution. In some
embodiments, the OS 122 and/or protection software 124
may examine the state of the branch instruction log 138 as
part of such a determination.

Note that, while the functionality of the accumulator 142
and/or the comparator 144 is described above in terms of the
example of a return-call imbalance, embodiments are not
limited in this regard. In particular, in some embodiments, the
accumulator 142 and/or the comparator 144 may use any
other type of control transfer event, or any combination of
types of control transfer events. For example, in some
embodiments, the accumulator 142 may increment the count
in response to instances of control transfer instructions, with-
out decrementing the count. In another example, in some
embodiments, the accumulator 142 may increment and/or
decrement the count in response to detecting control transfer
instructions that are associated with stack-related instructions
(e.g., a jump instruction using a pointer associated with a pop
instruction, a jump instruction using a pointer associated with
apush instruction, etc.). In yet another example, the accumu-
lator 142 may increment and/or decrement the count in
response to detecting control transfer instructions that are
associated with instructions to change the stack pointer value
(e.g., areturn instruction associated with a move instruction).
In still another example, in some embodiments, the accumu-
lator 142 may increment the count in response to return
mispredictions and/or branch mispredictions. This function-
ality of the accumulator 142 and/or the comparator 144 is
described further below with reference to FIGS. 3A-3D.

In one or more embodiments, the ROP detection logic 140
may include multiple sets of components (e.g., accumulator
142, comparator 144, etc.), with each set corresponding to a
different type of control transfer event. For example, in some
embodiments, the ROP detection logic 140 may include a first
accumulator 142 to generate a first count based on detections
of return instructions, and may include a second accumulator
142 to generate a second count based on branch mispredic-

10

15

20

25

30

35

40

45

50

55

60

65

6

tions. In some embodiments, the counts generated by such
sets may be combined to generate a single ROP metric. Alter-
natively, in some embodiments, the count generated by each
set may correspond to a different ROP metric which may be
evaluated to detect ROP attacks. In such embodiments, the
control logic 148 may evaluate each ROP metric separately
using a different threshold and/or window, and may trigger an
attack notification if any single ROP metric exceeds its cor-
responding threshold. Optionally, in some embodiments, the
control logic 148 may only trigger an attack notification if at
least a predefined number of ROP metrics exceed their asso-
ciated thresholds. Further, in such embodiments, each ROP
metric may be weighted by a respective weight or importance.

In one or more embodiments, the bias logic 146 includes
functionality to bias or adjust the accumulator 142 to reduce
any effects due to natural imbalances (i.e., an imbalance or
bias that is not caused by ROP attacks). Specifically, in some
embodiments, the bias logic 146 may periodically divide or
reduce the count of the accumulator 142 over a given period.
For example, in one or more embodiments, the bias logic 146
may shift the accumulator 142 to the right by one bit in order
to divide the count by two. In such a manner, the bias logic
146 may offset or reduce any natural imbalances that may be
inherent in the system 100 (e.g., imbalances due to program
exits, error states, etc.).

In one or more embodiments, the control logic 148
includes functionality to manage the ROP detection logic
140. In some embodiments, such functionality may include
adjusting the sensitivity of the ROP detection logic 140 based
on an estimated threat level and/or desired level of protection
against ROP attacks (e.g., low, medium, high, etc.). For
example, the control logic 148 may increase the threshold
used by the comparator 144 in response to a lowered threat or
protection level, thereby requiring a greater imbalance to
occur in the accumulator 142 before triggering an attack
notification (i.e., decreasing sensitivity to an ROP attack).
Similarly, the control logic 148 may lower the threshold used
by the comparator 144 in response to a heightened threat or
protection level, thereby requiring a smaller imbalance to
occur in the accumulator 142 before triggering an attack
notification (i.e., increasing sensitivity to an ROP attack). In
another example, the control logic 148 may increase or
decrease the length of the window used by the accumulator
142 to adjust sensitivity to an ROP attack. In yet another
example, the control logic 148 may adjust the biasing effect of
the bias logic 146 to compensate for system changes which
may affect any natural imbalances.

Referring now to FIG. 2, shown is a sequence 200 for
detecting a ROP attack, in accordance with one or more
embodiments. In one or more embodiments, the sequence
200 may be part of the ROP detection logic 140 shown in FIG.
1A. The sequence 200 may be implemented in hardware,
software, and/or firmware. In firmware and software embodi-
ments it may be implemented by computer executed instruc-
tions stored in a non-transitory computer readable medium,
such as an optical, semiconductor, or magnetic storage
device.

At step 210, control transfer events may be detected. For
example, referring to FIG. 1B, the instruction detector 134
may detect instances of control transfer instructions (e.g., call
instructions, return instructions, branch or jump instructions,
etc). In another example, the branch prediction unit 137 may
detect mispredictions of control transfer instructions.

At step 220, an ROP metric may be determined based on
the control transfer events (detected at step 210). In one or
more embodiments, the ROP metric may be a count value
based on instances of control transfer instructions and/or

US 9,251,348 B2

7

mispredictions. Further, in some embodiments, the ROP met-
ric may be limited to a predefined window. For example,
referring to FIG. 1B, the accumulator 142 may increment
and/or decrement a counter in response to a detection of a
particular type of instruction (e.g., a return instruction, a call
instruction, a branch instruction, a far branch instruction,
etc.). In another example, the accumulator 142 may incre-
ment and/or decrement the counter in response to associated
pairs of instructions (e.g., a push or pop instruction associated
with a jump instruction, a return instruction associated with
an instruction moving the stack pointer, etc.). In some
embodiments, the accumulator 142 may detect the aforemen-
tioned instructions based on a signal from the instruction
detector 134. In yet another example, the accumulator 142
may increment and/or decrement the counter in response to a
branch misprediction (e.g., determined by interacting with
the branch prediction unit 137). In still another example, the
accumulator 142 may increment and/or decrement the
counter in response to a return misprediction (e.g., deter-
mined by interacting with the return stack buffer 136). The
steps involved in performing step 220 are discussed in greater
detail below with reference to FIGS. 3A-3E.

At step 230, a determination about whether the metric
exceeds a predefined threshold is made. In one or more
embodiments, the predefined threshold may correspond to a
level of the metric that indicates that a system is probably
under ROP attack. For example, referring to FIG. 1B, the
comparator 144 may determine whether the count of the
accumulator 142 exceeds a predefined threshold.

If it is determined at step 230 that the metric does not
exceed the predefined threshold, then the sequence 200 ends.
However, if it is determined at step 230 that the metric
exceeds the predefined threshold, then at step 240, protection
software (e.g., an anti-malware application) may be notified
that a ROP attack has been detected. For example, referring to
FIG. 1A, the ROP protection logic 140 may send an ROP
attack notification (e.g., an interrupt, an exception, etc.) to the
protection software 124 and/or the operating system 122 to
indicate that a possible ROP attack has been detected. In some
embodiments, the ROP attack notification may trigger the
protection software to take one or more actions to address the
ROP attack (e.g., monitor suspected code, quarantine sus-
pected code, notify an administrator or a management sys-
tem, halt execution, shut down a system, etc.).

Atstep 250, in some embodiments, a branch instruction log
may be frozen in response to determining (at step 230) that the
metric exceeds the predefined threshold. For example, refer-
ring to FIG. 1B, the contents of the branch instruction log 138
may be frozen (i.e., no longer updated) in response to a signal
from the control logic 148. In some embodiments, the con-
tents of the branch instruction log 138 may then be provided
to the protection software 124 (shown in FIG. 1A) for use in
analyzing and/or addressing the possible ROP attack. After
step 250, the sequence 200 ends.

Referring now to FIG. 3A, shown is a sequence 310 for
determining a metric, in accordance with one or more
embodiments. In particular, the sequence 310 illustrates an
exemplary expansion of the steps involved in performing step
220 (shown in FIG. 2). In one or more embodiments, the
sequence 310 may be part of the ROP detection logic 140
shown in FIG. 1A. The sequence 310 may be implemented in
hardware, software, and/or firmware. In firmware and soft-
ware embodiments it may be implemented by computer
executed instructions stored in a non-transitory computer
readable medium, such as an optical, semiconductor, or mag-
netic storage device.

10

15

20

25

30

35

40

45

50

55

60

65

8

At step 312, a count may be incremented for each instance
of'a return instruction. For example, referring to FIG. 1B, the
accumulator 142 may receive a signal from the instruction
detector 134 indicating the detection of a return instruction. In
response to receiving this signal, the accumulator 142 may
increment a counter by one.

At step 314, the count may be decremented for each
instance of a call instruction. For example, referring to FIG.
1B, the accumulator 142 may receive a signal from the
instruction detector 134 indicating the detection of a call
instruction. In response to receiving this signal, the accumu-
lator 142 may decrement the counter by one. In one or more
embodiments, the counter value may correspond to a return-
call imbalance metric.

At step 316, the count may optionally be adjusted by a bias
factor. For example, referring to FIG. 1B, the bias logic 146
may determine a need to reduce the counter of the accumu-
lator 142 to compensate for natural return-call imbalances in
the system 100. Accordingly, the bias logic 146 may shift the
accumulator 142 to the right by one bit in order to divide the
counter value by two, thereby reducing the effect of the natu-
ral imbalances. After step 316, the sequence 310 continues at
step 230 (shown in FIG. 2).

Optionally, in some embodiments, step 314 may be omit-
ted from the sequence 310. For example, referring to FIG. 1B,
the accumulator 142 may increment the count in response to
instances of return instructions, without decrementing the
count in response to instances of call instructions. Accord-
ingly, in such embodiments, the counter value of the accumu-
lator 142 may not correspond to a return-call imbalance met-
ric, but may instead correspond to a metric of the number of
return instructions executed during the predefined window of
the accumulator 142.

Referring now to FIG. 3B, shown is a sequence 320 for
determining a metric, in accordance with one or more
embodiments. In particular, the sequence 320 illustrates an
exemplary expansion of the steps involved in performing step
220 (shown in FIG. 2). In one or more embodiments, the
sequence 320 may be part of the ROP detection logic 140
shown in FIG. 1A. The sequence 320 may be implemented in
hardware, software, and/or firmware. In firmware and soft-
ware embodiments it may be implemented by computer
executed instructions stored in a non-transitory computer
readable medium, such as an optical, semiconductor, or mag-
netic storage device.

At step 322, a count may be incremented for each instance
of a control transfer instruction associated with a stack pop
instruction. For example, referring to FIG. 1B, the accumu-
lator 142 may determine whether a jump instruction and a
stack pop instruction are executed within a predefined dis-
tance (i.e., a number of instructions) of each other. In some
embodiments, the association between the jump instruction
and a stack pop instruction may be determined based on
whether the target value from the stack pop instruction is used
by the jump instruction. Further, in some embodiments, such
a pair of associated instructions may be functionally similar
to a return instruction, and may thus be indicative of a pos-
sible ROP attack. Accordingly, if a pair of associated instruc-
tions is detected, the accumulator 142 may increment a
counter by one.

At step 324, the count may be decremented for each
instance of a control transfer instruction associated with a
stack push instruction. In some embodiments, such a pair of
associated instructions may be functionally similar to a call
instruction. For example, referring to FIG. 1B, the accumu-
lator 142 may determine whether a jump instruction and a

US 9,251,348 B2

9

stack push instruction are executed within a predefined dis-
tance, and if so, may decrement the counter by one.

At step 326, the count may optionally be adjusted by a bias
factor. For example, referring to FIG. 1B, the bias logic 146
may divide or otherwise reduce the counter value of the
accumulator 142 in order to reduce the effect of the natural
imbalances. After step 326, the sequence 320 continues at
step 230 (shown in FIG. 2).

Referring now to FIG. 3C, shown is a sequence 330 for
determining a metric, in accordance with one or more
embodiments. In particular, the sequence 330 illustrates an
exemplary expansion of the steps involved in performing step
220 (shown in FIG. 2). In one or more embodiments, the
sequence 330 may be part of the ROP detection logic 140
shown in FIG. 1A. The sequence 330 may be implemented in
hardware, software, and/or firmware. In firmware and soft-
ware embodiments it may be implemented by computer
executed instructions stored in a non-transitory computer
readable medium, such as an optical, semiconductor, or mag-
netic storage device.

At step 332, a count may be incremented for each instance
ofa control transfer instruction associated with an increase in
the stack pointer. For example, referring to FIG. 1B, the
accumulator 142 may determine whether a jump instruction
is associated with an increase in the stack pointer. In response
to such a determination, the accumulator 142 may increment
a counter by one.

At step 334, the count may be decremented for each
instance of a control transfer instruction associated with a
decrease in the stack pointer. For example, referring to FIG.
1B, the accumulator 142 may determine whether a jump
instruction is associated with a decrease in the stack pointer,
and if so, may decrement the counter by one.

At step 336, the count may optionally be adjusted by a bias
factor. For example, referring to FIG. 1B, the bias logic 146
may divide or otherwise reduce the counter value of the
accumulator 142 in order to reduce the effect of the natural
imbalances. After step 336, the sequence 330 continues at
step 230 (shown in FIG. 2).

Referring now to FIG. 3D, shown is a sequence 340 for
determining a metric, in accordance with one or more
embodiments. In particular, the sequence 340 illustrates an
exemplary expansion of the steps involved in performing step
220 (shown in FIG. 2). In one or more embodiments, the
sequence 340 may be part of the ROP detection logic 140
shown in FIG. 1A. The sequence 340 may be implemented in
hardware, software, and/or firmware. In firmware and soft-
ware embodiments it may be implemented by computer
executed instructions stored in a non-transitory computer
readable medium, such as an optical, semiconductor, or mag-
netic storage device.

At step 342, a count may be incremented for each return
misprediction. For example, referring to FIG. 1B, the accu-
mulator 142 may interact with the return stack buffer 136 to
detect a return misprediction. In response to such a determi-
nation, the accumulator 142 may increment a counter by one.

At step 344, the count may optionally be decremented for
each correct return prediction. For example, referring to FIG.
1B, the accumulator 142 may interact with the return stack
buffer 136 to detect a correct return prediction. In response to
such a determination, the accumulator 142 may decrement a
counter by one. Alternatively, in some embodiments, the
count may not be decremented for each correct return predic-
tion. For example, in some embodiments, the count may be
reset to zero for each correct return prediction. In another
example, in some embodiments, the count may not be altered
in response to a correct return prediction.

10

15

20

25

30

35

40

45

50

55

60

65

10

At step 346, the count may optionally be adjusted by a bias
factor. For example, referring to FIG. 1B, the bias logic 146
may divide or otherwise reduce the counter value of the
accumulator 142 in order to reduce the effect of the natural
imbalances. After step 346, the sequence 340 continues at
step 230 (shown in FIG. 2).

Referring now to FIG. 3E, shown is a sequence 350 for
determining a metric, in accordance with one or more
embodiments. In particular, the sequence 350 illustrates an
exemplary expansion of the steps involved in performing step
220 (shown in FIG. 2). In one or more embodiments, the
sequence 350 may be part of the ROP detection logic 140
shown in FIG. 1A. The sequence 350 may be implemented in
hardware, software, and/or firmware. In firmware and soft-
ware embodiments it may be implemented by computer
executed instructions stored in a non-transitory computer
readable medium, such as an optical, semiconductor, or mag-
netic storage device.

At step 352, a count may be incremented for each branch
misprediction. For example, referring to FIG. 1B, the accu-
mulator 142 may interact with the branch prediction unit 137
to detect any branch misprediction. In response to such a
determination, the accumulator 142 may increment a counter
by one. Alternatively, in some embodiments, the accumulator
142 may increment a counter only in response to detecting a
particular type of branch misprediction (e.g., a mispredicted
indirect branch).

At step 354, the count may optionally be decremented for
each correct branch prediction. For example, referring to FIG.
1B, the accumulator 142 may interact with the branch predic-
tion unit 137 to detect a correct branch prediction. In response
to such a determination, the accumulator 142 may decrement
a counter by one. Alternatively, in some embodiments, the
count may not be decremented for each correct branch pre-
diction. For example, in some embodiments, the count may
be reset to zero for each correct branch prediction. In another
example, in some embodiments, the count may not be altered
in response to a correct branch prediction.

At step 356, the count may optionally be adjusted by a bias
factor. For example, referring to FIG. 1B, the bias logic 146
may divide or otherwise reduce the counter value of the
accumulator 142 in order to reduce the effect of the natural
imbalances. After step 356, the sequence 350 continues at
step 230 (shown in FIG. 2).

Note that the examples shown in FIGS. 1A-1B, 2, and
3A-3E are provided for the sake of illustration, and are not
intended to limit any embodiments. For instance, while the
above examples describe incrementing or decrementing the
accumulator 142 by one, embodiments are not limited in this
regard. For example, the accumulator 142 may be incre-
mented by a firstamount (e.g., two, four, five, etc.) inresponse
to a first control transfer event, may be decremented by a
second amount in response to a second control transfer event,
etc. Further, it is contemplated that the ROP detection logic
140 may use any type of control transfer events, and/or any
combination thereof.

Note also that, while embodiments may be shown in sim-
plified form for the sake of clarity, embodiments may include
any number and/or arrangement of processors, cores, and/or
additional components (e.g., buses, storage media, connec-
tors, power components, buffers, interfaces, etc.). In particu-
lar, it is contemplated that some embodiments may include
any number of components (e.g., additional accumulators
142 and/or comparators 144) in addition to those shown, and
that different arrangement of the components shown may
occur in certain implementations. Further, it is contemplated

US 9,251,348 B2

11

that specifics in the examples shown in FIGS. 1A-1B, 2, and
3A-3E may be used anywhere in one or more embodiments.

Referring now to FIG. 4, shown is a block diagram of a
processor in accordance with an embodiment of the present
invention. As shown in FIG. 4, the processor 400 may be a
multicore processor including first die 405 having a plurality
of cores 410a-410n of a core domain. The various cores
410a-41072 may be coupled via an interconnect 415 to a
system agent or uncore domain 420 that includes various
components. As seen, the uncore domain 420 may include a
shared cache 430 which may be a last level cache. In addition,
the uncore may include an integrated memory controller 440
and various interfaces 450.

Although not shown for ease of illustration in FIG. 4, in
some embodiments, each of the cores 410a-4107 may include
the ROP detection logic 140 shown in FIG. 1A-1B. Alterna-
tively, in some embodiments, some or all of the ROP detec-
tion logic 140 may be included in the uncore domain 420, and
may thus be shared across the cores 410a-4107.

With further reference to FIG. 4, the processor 400 may
communicate with a system memory 445, e.g., via a memory
bus. In addition, by interfaces 450, connection can be made to
various off-package components such as peripheral devices,
mass storage and so forth. While shown with this particular
implementation in the embodiment of FIG. 4, the scope of the
present invention is not limited in this regard.

Referring now to FIG. 5, shown is a block diagram of a
multi-domain processor in accordance with another embodi-
ment of the present invention. As shown in the embodiment of
FIG. 5, processor 500 includes multiple domains. Specifi-
cally, a core domain 510 can include a plurality of cores
510a-510n, a graphics domain 520 can include one or more
graphics engines, and a system agent domain 550 may further
be present. Each of the cores 510a-510# can include the ROP
detection logic 140 described above with reference to FIGS.
1A-1B. Note that while only shown with three domains,
understand the scope of the present invention is not limited in
this regard and additional domains can be present in other
embodiments. For example, multiple core domains may be
present each including at least one core.

In general, each core 510 may further include low level
caches in addition to various execution units and additional
processing elements. In turn, the various cores may be
coupled to each other and to a shared cache memory formed
of a plurality of units of a last level cache (LLC) 540a-540z.
In various embodiments, LLC 550 may be shared amongst
the cores and the graphics engine, as well as various media
processing circuitry. As seen, a ring interconnect 530 thus
couples the cores together, and provides interconnection
between the cores, graphics domain 520 and system agent
circuitry 550.

In the embodiment of FIG. 5, system agent domain 550
may include display controller 552 which may provide con-
trol of and an interface to an associated display. As further
seen, system agent domain 550 may also include a power
control unit 555 to allocate power to the CPU and non-CPU
domains.

As further seen in FIG. 5, processor 500 can further include
an integrated memory controller (IMC) 570 that can provide
for an interface to a system memory, such as a dynamic
random access memory (DRAM). Multiple interfaces 580a-
580n may be present to enable interconnection between the
processor and other circuitry. For example, in one embodi-
ment at least one direct media interface (DMI) interface may
be provided as well as one or more Peripheral Component
Interconnect Express (PCI Express™ (PCle™)) interfaces.
Still further, to provide for communications between other

20

25

30

35

40

45

55

12

agents such as additional processors or other circuitry, one or
more interfaces in accordance with an Intel® Quick Path
Interconnect (QPI) protocol may also be provided. As further
seen, a peripheral controller hub (PCH) 590 may also be
present within the processor, and can be implemented on a
separate die, in some embodiments. Although shown at this
high level in the embodiment of FIG. 5, understand the scope
of the present invention is not limited in this regard.

Referring to FIG. 6, an embodiment of a processor includ-
ing multiple cores is illustrated. Processor 1100 includes any
processor or processing device, such as a microprocessor, an
embedded processor, a digital signal processor (DSP), a net-
work processor, a handheld processor, an application proces-
sor, a co-processor, a system on a chip (SOC), or other device
to execute code. Processor 1100, in one embodiment,
includes at least two cores—cores 1101 and 1102, which may
include asymmetric cores or symmetric cores (the illustrated
embodiment). However, processor 1100 may include any
number of processing eclements that may be symmetric or
asymmetric.

In one embodiment, a processing element refers to hard-
ware or logic to support a software thread. Examples of hard-
ware processing elements include: a thread unit, a thread slot,
a thread, a process unit, a context, a context unit, a logical
processor, a hardware thread, a core, and/or any other ele-
ment, which is capable of holding a state for a processor, such
as an execution state or architectural state. In other words, a
processing element, in one embodiment, refers to any hard-
ware capable of being independently associated with code,
such as a software thread, operating system, application, or
other code. A physical processor typically refers to an inte-
grated circuit, which potentially includes any number of other
processing elements, such as cores or hardware threads.

A core often refers to logic located on an integrated circuit
capable of maintaining an independent architectural state,
wherein each independently maintained architectural state is
associated with at least some dedicated execution resources.
In contrast to cores, a hardware thread typically refers to any
logic located on an integrated circuit capable of maintaining
anindependent architectural state, wherein the independently
maintained architectural states share access to execution
resources. As can be seen, when certain resources are shared
and others are dedicated to an architectural state, the line
between the nomenclature of a hardware thread and core
overlaps. Yet often, a core and a hardware thread are viewed
by an operating system as individual logical processors,
where the operating system is able to individually schedule
operations on each logical processor.

Physical processor 1100, as illustrated in FIG. 6, includes
two cores, cores 1101 and 1102. Here, cores 1101 and 1102
are considered symmetric cores, i.e. cores with the same
configurations, functional units, and/or logic. In another
embodiment, core 1101 includes an out-of-order processor
core, while core 1102 includes an in-order processor core.
However, cores 1101 and 1102 may be individually selected
from any type of core, such as a native core, a software
managed core, a core adapted to execute a native instruction
set architecture (ISA), a core adapted to execute a translated
ISA, a co-designed core, or other known core. Yet to further
the discussion, the functional units illustrated in core 1101 are
described in further detail below, as the units in core 1102
operate in a similar manner.

As shown, core 1101 includes two hardware threads 1101a
and 11015, which may also be referred to as hardware thread
slots 1101a and 11015. Therefore, software entities, such as
an operating system, in one embodiment potentially view
processor 1100 as four separate processors, i.e., four logical

US 9,251,348 B2

13

processors or processing elements capable of executing four
software threads concurrently. As alluded to above, a first
thread is associated with architecture state registers 1101a, a
second thread is associated with architecture state registers
11015, a third thread may be associated with architecture
state registers 1102a, and a fourth thread may be associated
with architecture state registers 11025. Here, each of the
architecture state registers (1101a, 11015, 11024, and 11025)
may be referred to as processing elements, thread slots, or
thread units, as described above.

As illustrated, architecture state registers 1101a are repli-
cated in architecture state registers 11015, so individual
architecture states/contexts are capable of being stored for
logical processor 1101« and logical processor 11015. In core
1101, other smaller resources, such as instruction pointers
and renaming logic in allocator and renamer block 1130 may
also be replicated for threads 1101¢ and 110154. Some
resources, such as re-order buffers in reorder/retirement unit
1135, ILTB 1120, load/store buffers, and queues may be
shared through partitioning. Other resources, such as general
purpose internal registers, page-table base register(s), low-
level data-cache and data-TL.B 1115, execution unit(s) 1140,
and portions of out-of-order unit 1135 are potentially fully
shared.

Processor 1100 often includes other resources, which may
be fully shared, shared through partitioning, or dedicated
by/to processing elements. In FIG. 6, an embodiment of a
purely exemplary processor with illustrative logical units/
resources of a processor is illustrated. Note that a processor
may include, or omit, any of these functional units, as well as
include any other known functional units, logic, or firmware
not depicted. As illustrated, core 1101 includes a simplified,
representative out-of-order (OOQ) processor core. But an
in-order processor may be utilized in different embodiments.
The OOO core includes a branch target bufter 1120 to predict
branches to be executed/taken and an instruction-translation
buffer (I-TLB) 1120 to store address translation entries for
instructions.

Core 1101 further includes decode module 1125 coupled to
fetch unit 1120 to decode fetched elements. Fetch logic, in
one embodiment, includes individual sequencers associated
with thread slots 1101a, 11015, respectively. Usually core
1101 is associated with a first ISA, which defines/specifies
instructions executable on processor 1100. Often machine
code instructions that are part of the first ISA include a portion
of the instruction (referred to as an opcode), which refer-
ences/specifies an instruction or operation to be performed.
Decode logic 1125 includes circuitry that recognizes these
instructions from their opcodes and passes the decoded
instructions on in the pipeline for processing as defined by the
first ISA. As a result of the recognition by decoders 1125, the
architecture or core 1101 takes specific, predefined actions to
perform tasks associated with the appropriate instruction
(e.g., the actions shown in FIGS. 2-3E). It is important to note
that any of the tasks, blocks, operations, and methods
described herein may be performed in response to a single or
multiple instructions; some of which may be new or old
instructions.

In one example, allocator and renamer block 1130 includes
an allocator to reserve resources, such as register files to store
instruction processing results. However, threads 1101a and
11015 are potentially capable of out-of-order execution,
where allocator and renamer block 1130 also reserves other
resources, such as reorder buffers to track instruction results.
Unit 1130 may also include a register renamer to rename
program/instruction reference registers to other registers
internal to processor 1100. Reorder/retirement unit 1135

5

10

15

20

25

30

35

40

45

50

55

60

65

14

includes components, such as the reorder butfers mentioned
above, load buffers, and store buffers, to support out-of-order
execution and later in-order retirement of instructions
executed out-of-order.

Scheduler and execution unit(s) block 1140, in one
embodiment, includes a scheduler unit to schedule instruc-
tions/operation on execution units. For example, a floating
point instruction is scheduled on a port of an execution unit
that has an available floating point execution unit. Register
files associated with the execution units are also included to
store information instruction processing results. Exemplary
execution units include a floating point execution unit, an
integer execution unit, a jump execution unit, a load execution
unit, a store execution unit, and other known execution units.

Lower level data cache and data translation buffer (D-TLB)
1150 are coupled to execution unit(s) 1140. The data cache is
to store recently used/operated on elements, such as data
operands, which are potentially held in memory coherency
states. The D-TLB is to store recent virtual/linear to physical
address translations. As a specific example, a processor may
include a page table structure to break physical memory into
a plurality of virtual pages.

Here, cores 1101 and 1102 share access to higher-level or
further-out cache 1110, which is to cache recently fetched
elements. Note that higher-level or further-out refers to cache
levels increasing or getting further away from the execution
unit(s). In one embodiment, higher-level cache 1110 is a
last-level data cache—Iast cache in the memory hierarchy on
processor 1100—such as a second or third level data cache.
However, higher level cache 1110 is not so limited, as it may
be associated with or includes an instruction cache. A trace
cache—a type of instruction cache—instead may be coupled
after decoder 1125 to store recently decoded traces.

Inthe depicted configuration, processor 1100 also includes
bus interface module 1105 and a power controller 1160,
which may perform power sharing control in accordance with
an embodiment of the present invention. Historically, control-
ler 1170 has been included in a computing system external to
processor 1100. In this scenario, bus interface 1105 is to
communicate with devices external to processor 1100, such
as system memory 1175, a chipset (often including a memory
controller hub to connect to memory 1175 and an 1/O con-
troller hub to connect peripheral devices), a memory control-
ler hub, a northbridge, or other integrated circuit. And in this
scenario, bus 1105 may include any known interconnect, such
as multi-drop bus, a point-to-point interconnect, a serial inter-
connect, a parallel bus, a coherent (e.g. cache coherent) bus,
a layered protocol architecture, a differential bus, and a GTL
bus.

Memory 1175 may be dedicated to processor 1100 or
shared with other devices in a system. Common examples of
types of memory 1175 include DRAM, SRAM, non-volatile
memory (NV memory), and other known storage devices.
Note that device 1180 may include a graphic accelerator,
processor or card coupled to a memory controller hub, data
storage coupled to an I/O controller hub, a wireless trans-
ceiver, a flash device, an audio controller, a network control-
ler, or other known device.

Note however, that in the depicted embodiment, the con-
troller 1170 is illustrated as part of processor 1100. Recently,
as more logic and devices are being integrated on a single die,
such as SOC, each of these devices may be incorporated on
processor 1100. For example in one embodiment, memory
controller hub 1170 is on the same package and/or die with
processor 1100. Here, a portion of the core (an on-core por-
tion) includes one or more controller(s) 1170 for interfacing
with other devices such as memory 1175 or a graphics device

US 9,251,348 B2

15

1180. The configuration including an interconnect and con-
trollers for interfacing with such devices is often referred to as
an on-core (or un-core configuration). As an example, bus
interface 1105 includes a ring interconnect with a memory
controller for interfacing with memory 1175 and a graphics
controller for interfacing with graphics processor 1180. Yet,
in the SOC environment, even more devices, such as the
network interface, co-processors, memory 1175, graphics
processor 1180, and any other known computer devices/in-
terface may be integrated on a single die or integrated circuit
to provide small form factor with high functionality and low
power consumption.

Embodiments may be implemented in many different sys-
tem types. Referring now to FIG. 7, shown is a block diagram
of'a system in accordance with an embodiment of the present
invention. As shown in FIG. 7, multiprocessor system 600 is
a point-to-point interconnect system, and includes a first pro-
cessor 670 and a second processor 680 coupled via a point-
to-point interconnect 650. As shown in FIG. 7, each of pro-
cessors 670 and 680 may be multicore processors, including
first and second processor cores (i.e., processor cores 674a
and 6745 and processor cores 684a and 684b), although
potentially many more cores may be present in the proces-
sors. Each of the processors can include the ROP detection
logic 140 described above with reference to FIGS. 1A-1B.

Still referring to FIG. 7, first processor 670 further includes
amemory controller hub (MCH) 672 and point-to-point (P-P)
interfaces 676 and 678. Similarly, second processor 680
includes a MCH 682 and P-P interfaces 686 and 688. As
shown in FIG. 7, MCH’s 672 and 682 couple the processors
to respective memories, namely a memory 632 and a memory
634, which may be portions of system memory (e.g., DRAM)
locally attached to the respective processors. First processor
670 and second processor 680 may be coupled to a chipset
690 via P-P interconnects 652 and 654, respectively. As
shown in FIG. 7, chipset 690 includes P-P interfaces 694 and
698.

Furthermore, chipset 690 includes an interface 692 to
couple chipset 690 with a high performance graphics engine
638, by a P-P interconnect 639. In turn, chipset 690 may be
coupled to a first bus 616 via an interface 696. As shown in
FIG. 7, various input/output (I/O) devices 614 may be
coupled to first bus 616, along with a bus bridge 618 which
couples first bus 616 to a second bus 620. Various devices may
be coupled to second bus 620 including, for example, a key-
board/mouse 622, communication devices 626 and a data
storage unit 628 such as a disk drive or other mass storage
device which may include code 630, in one embodiment.
Further, an audio /O 624 may be coupled to second bus 620.
Embodiments can be incorporated into other types of systems
including mobile devices such as a smart cellular telephone,
tablet computer, netbook, Ultrabook™, or so forth.

It should be understood that a processor core may support
multithreading (executing two or more parallel sets of opera-
tions or threads), and may do so in a variety of ways including
time sliced multithreading, simultaneous multithreading
(where a single physical core provides a logical core for each
of the threads that physical core is simultaneously multi-
threading), or a combination thereof (e.g., time sliced fetch-
ing and decoding and simultaneous multithreading thereafter
such as in the Intel® Hyperthreading technology).

Any processor described herein may be a general-purpose
processor, such as a Core™ i3, i5, 17, 2 Duo and Quad,
Xeon™, Itanium™, XScale™ or StrongARMT™ processor,
which are available from Intel Corporation, of Santa Clara,
Calif. Alternatively, the processor may be from another com-
pany, such as ARM Holdings, Ltd, MIPS, etc. The processor

10

15

20

25

30

35

40

45

50

55

60

65

16

may be a special-purpose processor, such as, for example, a
network or communication processor, compression engine,
graphics processor, co-processor, embedded processor, or the
like. The processor may be implemented on one or more
chips. The processor may be a part of and/or may be imple-
mented on one or more substrates using any of a number of
process technologies, such as, for example, BiCMOS,
CMOS, or NMOS.

It is contemplated that the processors described herein are
not limited to any system or device. Other system designs and
configurations known in the arts for laptops, desktops, hand-
held PCs, personal digital assistants, engineering worksta-
tions, servers, network devices, network hubs, switches,
embedded processors, digital signal processors (DSPs),
graphics devices, video game devices, set-top boxes, micro
controllers, cell phones, portable media players, hand held
devices, and various other electronic devices, are also suit-
able. In general, a huge variety of systems or electronic
devices capable of incorporating a processor and/or other
execution logic as disclosed herein are generally suitable.

Embodiments may be implemented in code and may be
stored on a non-transitory storage medium having stored
thereon instructions which can be used to program a system to
perform the instructions. The storage medium may include,
but is not limited to, any type of disk including floppy disks,
optical disks, solid state drives (SSDs), compact disk read-
only memories (CD-ROMs), compact disk rewritables (CD-
RWs), and magneto-optical disks, semiconductor devices
such as read-only memories (ROMs), random access memo-
ries (RAMs) such as dynamic random access memories
(DRAMs), static random access memories (SRAMs), eras-
able programmable read-only memories (EPROMs), flash
memories, electrically erasable programmable read-only
memories (EEPROMs), magnetic or optical cards, or any
other type of media suitable for storing electronic instruc-
tions.

References throughout this specification to “one embodi-
ment” or “an embodiment” mean that a particular feature,
structure, or characteristic described in connection with the
embodiment is included in at least one implementation
encompassed within the present invention. Thus, appearances
of the phrase “one embodiment” or “in an embodiment” are
not necessarily referring to the same embodiment. Further-
more, the particular features, structures, or characteristics
may be instituted in other suitable forms other than the par-
ticular embodiment illustrated and all such forms may be
encompassed within the claims of the present application.

While the present invention has been described with
respect to a limited number of embodiments for the sake of
illustration, those skilled in the art will appreciate numerous
modifications and variations therefrom. It is intended that the
appended claims cover all such modifications and variations
as fall within the true spirit and scope of this present inven-
tion.

What is claimed is:

1. A processor comprising:

a Return Oriented Programming (ROP) detection unit to:

adjust a count in a first direction in response to detection
of one or more control transfer events of a first type
and adjust the count in a second direction in response
to detection of one or more control transfer events of
a second type; and

in response to a determination that the count exceeds a
threshold, provide an indication of a possible ROP
attack.

2. The processor of claim 1, wherein the ROP detection unit
comprises an accumulator to store the count.

US 9,251,348 B2

17

3. The processor of claim 1, wherein the ROP detection unit
is to increment the count in response to an instance of a
subroutine return instruction, wherein the subroutine return
instruction is a control transfer event of the first type.

4. The processor of claim 3, wherein the ROP detection unit
is to decrement the count in response to an instance of a
subroutine call instruction, wherein the subroutine call
instruction is a control transfer event of the second type.

5. The processor of claim 3, wherein the ROP detection unit
is further to increment the count in response to a return
misprediction.

6. The processor of claim 3, wherein the ROP detection unit
is further to increment the count in response to an instance of
a control transfer instruction associated with a stack pop
instruction.

7. The processor of claim 3, wherein the ROP detection unit
is further to increment the count in response to an instance of
a control transfer instruction associated with an increase in a
stack pointer.

8. The processor of claim 1, wherein the indication of the
possible ROP attack is to trigger a protection application to
take one or more actions to address the ROP attack.

9. The processor of claim 1, wherein the ROP detection unit
is further to freeze a branch instruction log when the count
exceeds the threshold.

10. A processor comprising:

an accumulator to generate a count in response to detection

of a plurality of types of control transfer events, wherein
the accumulator is to update the count in a first direction
in response to a first control transfer event type and
update the count in a second direction in response to a
second control transfer event type; and

acomparator to provide a notification of a Return Oriented

Programming (ROP) attack when the count exceeds a
threshold during a window.

11. The processor of claim 10, further comprising an
instruction detector to detect an execution of a control transfer
instruction, wherein the plurality of types of control transfer
events includes the execution of the control transfer instruc-
tion.

12. The processor of claim 10, further comprising a return
stack buffer to detect a return misprediction, wherein the
plurality of types of control transfer events includes the return
misprediction.

10

15

20

25

30

35

40

18

13. The processor of claim 10, further comprising a branch
prediction unit to detect a branch misprediction, wherein the
plurality of types of control transfer events includes the
branch misprediction.

14. The processor of claim 10, wherein the plurality of
types of control transfer events includes a pair of associated
instructions.

15. The processor of claim 10, further comprising bias
logic to adjust the count to reduce at least one bias effect due
to a natural imbalance.

16. The processor of claim 10, further comprising control
logic to adjust the threshold based on a desired level of pro-
tection against ROP attacks.

17. A non-transitory machine-readable medium having
stored thereon instructions, which if performed by a machine
cause the machine to perform a method comprising:

detecting, by instruction control logic of a hardware pro-

cessor, one or more call instructions and one or more
return instructions;

updating, by Return Oriented Programming (ROP) detec-

tion logic of the hardware processor, a count in a first
direction in response to the one or more call instructions
and updating the count in a second direction in response
to the one or more return instructions; and

in response to a determination that the count exceeds a

threshold during a window, notifying a protection appli-
cation of a ROP attack.

18. The machine-readable medium of claim 17, wherein
the method further comprises updating the count in the sec-
ond direction in response to a stack pivot.

19. The machine-readable medium of claim 17, wherein
the method further comprises updating the count in the sec-
ond direction in response to a particular type of mispredic-
tion.

20. The machine-readable medium of claim 17, wherein
the method further comprises, in response to a determination
that the count exceeds the threshold during the window, freez-
ing contents of a branch instruction log of the hardware pro-
Ccessor.

21. The processor of claim 10, wherein the processor fur-
ther comprises:

an instruction detector to detect at least some of the plural-

ity of types of control transfer events and to send a
detection signal to the accumulator, wherein the detec-
tion signal is to indicate a type of control transfer event.

#* #* #* #* #*

